Saltar a contenido principalHaga clic para ver nuestra Declaración de accesibilidad o contáctenos si tiene preguntas relacionadas con la accesibilidad.
Person with tablet looking down over a manufacturing floor

The Perfect Industrial Internet of Things (IIoT) Platform

In recent years, we’ve seen an evolution of IIoT capabilities, with advances in data science and more accurate and cost-effective sensors leading to broader adoption of IIoT solutions. Despite these tech advances, some limitations remain. Markus Larsson and Kai Goebel from PARC, a Xerox Company, recently sat down at the Industrial Internet of Things USA conference to discuss how solutions can evolve in the IIoT space to create the “perfect IIoT platform.”

Xerox Presentation for IIoT USA Summit 2020 YouTube Video

The Move to Digitization

The broader macro trends of Industry 4.0 and Smart Factories are driving the move to digitization in the industrial sector. Digitization of assets, supply chains, and logistics is gaining ground in industrial settings, where automation and predictive maintenance deliver significant benefits to plant operations.

However, adoption is still relatively small, except for a few industries such as aerospace and automotive. This is mainly because we are dealing in “atoms vs. bits,” which requires cyber-physical systems and hardware-to-software integrations that add complexity on the path to digitization. 

Two key issues remain a hindrance to adoption:

  1. Poor prognostic accuracy, i.e., how much remaining life remains for industrial assets before maintenance is needed. This materially limits the economic value of predictive maintenance solutions.

  2. Manufacturers need longtime horizons to make predictions useful. For example, the lead time required for a particular asset can vary from one week to up to six months for remaining life estimates to be practically useful.

In Search of the Perfect IIoT Platform

Using the right type of data and selecting the proper analytical techniques will ultimately move the needle on making decisions that improve business efficiency and the bottom line. 

Kai, a principal PARC scientist with more than 20 years of industry experience, shared, “Plant operators want to know with accuracy the remaining life of the current equipment they have, but today that knowledge remains elusive.”

As equipment ages, monitoring becomes more critical and unplanned downtime more costly. A recent Deloitte report estimated that unplanned downtime costs industrial manufacturers an estimated $50 billion annually. According to a 2017 PwC and Mainnovation report, while only one in five companies has started deploying advanced solutions, nearly half are developing future implementation plans for predictive maintenance solutions.

Accurately predicting when an asset needs maintenance reduces downtime while increasing plant efficiency and profit. The perfect IIoT platform would work autonomously, predict the maintenance required, and schedule a plant worker to conduct a site visit, all automatically upon an asset prognostic generated by an IIoT sensing device.

Today, plant managers and operations leadership teams dream of a platform that can cut through data uncertainty to deliver solutions. The Perfect IIoT platform needs to incorporate the different forms of reasoning methods such as physics-based models and AI-based prediction methods that can integrate seamlessly into current workflows. 

Getting any plant to a place where all downtime is predictable is a significant challenge. The industry market leaders in predictive analytics promise asset failure prediction with a 50 percent prediction accuracy. Manufacturers need a better standard, and it's up to the innovators in this space to create more accurate solutions that solve manufacturers' problems. 

Innovación Xerox

Vea cómo algunas de las mentes más brillantes del planeta se reúnen en nuestros centros de investigación en todo el mundo para mejorar el futuro del trabajo.

Man looking between stacked servers

Potenciamos la IoT

Los sensores de hoy no pueden seguir el ritmo de la Internet de las cosas (IoT). Vamos a cambiar eso.

Artículos relacionados

  • View from above a woman who is looking at a printed chart

    Inteligencia artificial para imprentas

    Mire al interior de su prensa digital y descubra cómo la IA le ayuda a trabajar de forma más inteligente y a hacer crecer su negocio.

  • View from inside a 3D printer

    Impresión 3D en su cadena de suministro

    La impresión 3D reduce los costes logísticos y los plazos de entrega y refuerza su papel estratégico en la cadena de suministro.

  • Digital timeline with photos of Xerox PARC employees

    PARC celebra 50 años de innovación

    Y se prepara para los próximos 50 años.

  • Woman in a hard hat in a warehouse, using a tablet

    Fabricación inteligente: Coordinar su respuesta ante los cambios de que se presentan

    Hoy más que nunca, los fabricantes se ven obligados a producir mercancía para tiradas cortas y a medida, por encargo y en condiciones poco seguras. 

  • People looking through a wall of digital images

    Agentes de cambio: Raja Bala

    Imaginando un futuro mejor - Aprovechar el poder de la visión artificial

  • Wendy Abbott, Xerox engineer, with an icon of the ConnectKey user interface she designed

    Resolución de problemas con software

    «Hay gente ahí fuera todos los días usando esto y está haciendo que sus trabajos sean más productivos».

Compartir