A Course Tailored Just for You.
Content from many sources packaged in one book.

Collecting relevant material from multiple sources and combining them into a course pack that’s tailored to meet specific educational goals couldn’t be easier. With the Xerox® Color C60/C70 Printer and Xerox® D Series Copier/Printer or Printer learning becomes a rich, motivating experience using customized course packs that include professors’ notes, course outlines, color graphics and more.

The Opportunity
Traditional, off-the-shelf textbooks are often intimidating – and expensive. These books may not be adequate to meet the learning objectives. They can become outdated or simply not give the right educational focus, causing educators to spend time supplementing textbooks with a variety of other materials that drive up the cost of education.

Course packs provide an excellent alternative. They are tailored to fit the curriculum of a specific course. And as some content becomes outdated and new content becomes available, the course pack can easily be updated.

What better way to motivate students and to generate interest in a subject than with an appealing, customized course pack that plays an important role, making learning pleasurable and fun.

The Xerox Advantage
At Xerox, we have all the expertise needed to create course packs that faculty and students alike will enjoy and benefit from. The Xerox® Color C60/C70 Printer delivers high-impact color and the Xerox® D Series Copier/Printer or Printer provides outstanding black-and-white output. Together they provide you new advantages to compile content and graphics from multiple sources, use color to add interest throughout the course book, bind the content into one easy-to-use package and produce as many copies as you need, when you need them. When it’s time to revise the course, there’s nothing to it.
A Survey of Key Scientific Terms and Topics

Lesson 1: Plant Tissue

How is plant tissue culture used?

- Producing multiples of plants without the need for seed pollinators
- Removing viruses and other infections
- Producing mature plants quickly
- Identifying cells and producing plants with specific characteristics
- Producing large numbers of identical cells
- Producing plants from seeds that otherwise might not germinate
- Protecting plants from pests, and pathogens
- Identifying cells and producing plants with specific characteristics

In addition to applications of tissue cell culture in the forestry, floriculture, and biopharmaceutical industries, plant tissue culture is also used in cell and molecular biology, genetics, and biochemistry as a research technique.

The following resources were used to develop this lesson. You may use them as a starting point for doing the activities.

- http://www.ucopenaccess.org/courses/CPBiology/
- • http://www.liv.ac.uk/~sd21/tisscult/what.htm
- • A Survey of Key Scientific Terms and Topics

The unit cell is the basic unit or structure of crystals. The lattice pattern is identical between a crystal's particles. The time required to form crystals varies. Some natural crystals are used for scientific study, while others are used in the manufacture of materials such as glass, paper, or gemstones.

The unit cell repeats the identical pattern throughout the crystal. The crystal lattice is the geometric pattern formed by repeating repeating the unit cells. The lattice pattern is identical between a crystal's particles. The time required to form crystals varies.

What are crystals?

- Natural quartz can also be fused. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:
 - They place the seed and silica in an alkaline solution.
 - Scientists start with a seed, which is a small piece of natural crystal.
 - They place the seed and silica in an alkaline solution.
 - Scientists start with a seed, which is a small piece of natural crystal.
 - They place the seed and silica in an alkaline solution.
 - Scientists start with a seed, which is a small piece of natural crystal.
 - They place the seed and silica in an alkaline solution.

Can quartz be reproduced in a laboratory or manufactured?

- Shapes and sizes can vary. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:
- Shapes and sizes can vary. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:
- Shapes and sizes can vary. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:
- Shapes and sizes can vary. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:
- Shapes and sizes can vary. The resulting fused quartz is different from natural quartz. Since quartz has many applications, scientists have developed a way to produce it in a laboratory, following this process:

1. Front and back color covers are visually appealing and generate interest in the course.
2. Includes detailed photographs that students took while examining all kinds of specimen under a microscope.
3. Course pack can be produced in full color, economical black-and-white, or with color covers and black-and-white text pages.